Pharmacodynamics of antibiotics: Correlation between kinetics and activity

Paul M. Tulkens

Cellular and Molecular Pharmacology Unit & Centre for Clinical Pharmacy Catholic University of Louvain, Brussels, Belgium

www.isap.org

www.facm.ucl.ac.be

International Society for Anti-infective Pharmacology (ISAP)

Pharmacodynamics of antibiotics: Correlation between kinetics and activity

- Rising resistance and correlation with antibiotic use ...
- Did we use antibiotics in a rational way ? ...
- What is pharmacodynamics and how can it help you ? ...
- Can we prevent (or slow down the emergence of) resistance ? ...
- Can we also reduce health care costs ? ...

Resistance is the problem ...

* all β -lactams (= penicillins, cephalosporins, ...)

Belgian Reference Laboratory for pneumococci, Leuven, 2000

Overuse is also the problem ...

Risk of resistance to β -lactams among invasive isolates of *Streptoccus pneumoniae* regressed against outpatient sales of beta-lactam antibiotics in 11 European countries

- resistance data are from 1998 to 1999; antibiotic sales data 1997.
- DDD = defined daily doses

Bronzwaer SL, Cars O, et al. Emerg Infect Dis 2002 Mar;8(3):278-82

How can you be "better" ?

- be globally efficacious

 pharmacodynamics (PK/PD)
- avoid selection of resistance
 > "mutant prevention concentration"

What is Pharmacokinetics / Pharmacodynamics (PK/PD) ?

- Pharmacokinetics: what the body does to the drug
 - ➔ absorption, distribution, serum and tissue levels elimination, ...

- Pharmacodynamics (of AB): what the drug does to the bacteria
 - ➔ static vs. bactericidal effect, rate of kill, eradication, prevention of resistance....

The problem as seen from a question of the FDA...

Breakpoints tend to set up quantic limits in what is fundamentally a **continuous** distribution ...

What are "Pharmacodynamic indices" ?

- all drugs have pharmacokinetic properties that describe the way the body handles them
 - antibiotics are no exception ...
 - you need to consider the C_{max} and the clearance (that will result in a given half-life) to describe the <u>drug exposure</u>
- a drug needs to bind to its target to act ...
 - antibiotics are again no exception, but the target is the bacteria ...
 - the antibiotics can be studied in vitro to look at the extent of their action at increasing concentrations (like the binding of a ligand to its receptor in conventional pharmacology). This is drug pharmacodynamics...

Pharmacokinetics → Pharmacodynamics...

Example of a pharmacodynamic relationship

And what if we put pharmacokinetics ?

And what if we put pharmacokinetics ?

From Pharmacokinetics to Pharmacodynamics of AB ...

A simple dynamic model ...

Adapted from M.N. Dudley, ISAP / FDA Workshop, March 1st, 1999

Pharmacodynamics: the basic question ...

Main PK/PD properties of antibiotics

Available antibiotics can be divided in 3 groups :

Antibiotics Group # 1 (after W.A. Craig, 2000; revised 2002 and 2003)

1. Antibiotics with time-dependent effects and no or little persistent effects

AB	PK/PD parameter	Goal
β-lactams	time above the MIC	Maximalize the exposure time

How long should you stay above the MIC ?

Andes & Craig Int. J. Antimicrob. Agents 2002, 19: 261-268

Dosing amoxycilline for respiratory tract infections in Belgium

Antibiotics Group # 2

(after W.A. Craig, 2000; revised 2002 and 2003)

2. Antibiotics with time-dependent effects, no or little influence of concentration, but marked, persistent effects

AB	PK/PD parameter	Goal
glycopeptides tetracyclines macrolides linezolid	AUC / MIC	optimize the amount of antibiotic
streptogramins		

Antibiotics Group # 3

(after W.A. Craig, 2000; revised 2002 and 2003)

3. Antibiotics with concentration-dependent bactericidal activity and prolonged persistent effects (postantibiotic effects)

AB	PK/PD parameter	Goal	
aminoglycosides fluoroquinolones daptomycin ketolides	Peak and AUC / CMI	optimize the peak and the amount of antibiotic	

Aminoglycosides: get a peak !

Aminoglycosides: why a peak ?

Aminoglycosides are concentration-dependent drugs in the clinically meaningful concentration range ...

Aminoglycosides: why a peak ?

Clinical efficacy is linked to peak/MIC ratio

Fluoroquinolones: get a peak and an AUC !

increase the amount administered, in order to optimize AUC/MIC

and peak/MIC

Why an AUC / MIC > 125 for fluoroquinolones ...

What do you mean by PEAK /MIC > 10 and AUC / MIC > 100

AUC/MIC_{24h} =125 : a magical number?? 25 125 was the limit below which failure rates became unacceptable because p either • a large MIC or a too low dosage (AUC is proportional to the dosage)

Is 125 good for all ??

The saga of *S. pneumoniae* ...

non-neutropenic

neutropenic

How to optimize the AUC / MIC ratio ?

Adjust the daily dosis ~ target AUC

Adapt the number of administrations ~ pharmacokinetics of the drug

Mutant Prevention Concentration ...

"Window" where selection of mutants/resistants may take place ...

Time after administration

concept from Drlica & Zhao, Rev. Med. Microbiol. 2004, 15:73-80

Which are the MPC values compared to - MIC for <i>S. pneumoniae</i> - C _{max} for a standard dose ?				
Molecule	MIC	MPC	C _{max}	
levoflox. (500 mg)	1	8	≈ 6	
moxiflox. (400 mg)	0.25	1	≈ 4	

Adapted from D. Croisier, 2005, Bondeau et al., 2001, and Hansen et al, 2003

So, let us accept values with some degree of precaution

If you wish to prevent resistance

peak / MIC > 10
 (which covers the MPC)

If you believe your patient is not a healthy mouse ...

A proposal for PK/PD based-breakpoints for fluoroquinolones...

		Typical PK values		Proposed PK/PD upper limit	
		Course in mg/L	AUCarb	of sensitivity (µg/ml) for	
Drug	Typical daily dosage ^a	total/free (dose)	(mg × h/L) total/free	Efficacy ^b	Prevention of resistance ^c
Norfloxacin	800 mg	1.4/1.1 (400 mg PO)	14/11	0.1-0.4	0.1
Ciprofloxacin	1000 mg	2.5/1.75 (500 mg PO)	24/18	0.2–0.8	0.2
Ofloxacin	400 mg	4/3 (400 mg PO)	40/30	0.3–0.9	0.4
Levofloxacin	500 mg	4/2.8 (500 mg PO)	40/28	0.3–0.9	0.3
Moxifloxacin	400 mg	3.1/1.8 (400 mg PO)	35/21	0.2–0.7	0.2

Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM.

Quinolones in 2005: an update. Clin Microbiol Infect. 2005 Apr;11(4):256-80. PMID: 15760423

PK/PD in action ...

A clinical algorithm (follow.) ...

And what about health care costs ?

L. Sanchez, In Pharmacotherapy, DiPiro et al. eds, p.2, 1999

- Pharmacoeconomics of antibiotics is still largely underdeveloped outside the USA (but US-based models cannot easily be applied);
- However, comparisons identifying differences in
 - amount of money needed to reach a given (better ?) clinical outcome;
 - expenses related to the same (or better) quality of life and patient's satisfaction;

may already suggest interesting avenues for further fine-tuning therapeutic guidelines

• Know your LOCAL epidemiology

obtain MIC distributions from your microbiologists...

- know the PK profile of the drugs you consider to purchase
 - aim at obtaining > 90 % efficacy against the organisms of interest (AUC, peak, time above MIC) with a standard dosage, ...
- include a safety margin (MPC ...)
- Compare products on that basis first ...
- Remember that
 - no antibiotic (if possible) is the best...
 - but that treatment failures (when treatment is needed) cost a lot ...

Please, act ...

W.A. Craig, MD M.N. Dudley, Pharm. G.L. Drusano, MD J.J. Schentag, Pharm. A. McGowan, MD X. Zao, PhD V. Firsov, MD S. Zinner, MD A. Dalhoff, PhD

ISAP

www.isap.org

....

www.antiinfectieux.org

- F. Van Bambeke, Pharm.
- A. Spinewine, Pharm.
- S. Carryn, Pharm.
- H. Chanteux, Pharm.
- H. Servais, Pharm.

. . .

