4th Arab Symposium for Antimicrobial agents Tunis, Tunisia, 17-20 April 2006

Epidemiology of Bacterial Meningitis in the WHO Eastern Mediterranean Region

Dr E. Mohsni, MO, VPI, WHO EMRO

Outline

- Epidemiology
 » at the global level
 » In the E.M. Region
- WHO Eastern Mediterranean Regional Network for bacterial Meningitis Surveillance

Bacterial Meningitis

- Bacterial infection affecting the brain and the spinal cord
- 3 main Pathogens:
 - Hib
 - Streptoc.Pneumoniae
 - Neisseria meningitidis (serogroups: A, B, C, W135, X, Y, Z, 29E..) → Epidemics

• Etiology varies by age group and region of the world

Burden of meningitis

- Without epidemics:
 - » 1 million cases per year
 - » 173,000 deaths
 - Case fatality rates vary with age and the causative agent
 - 3 to 19% in developed countries
 - Much higher (37 to 60%) in developing countries
 - » High proportion (up to 50%) of survivors are left with disability
 - » 6,192,000 DALYs
- During epidemics (African Meningitis Belt)
 → Burden is much higher

Global Burden of Bacterial Meningitis

WHO Eastern Mediterranean Region (EMRO)

WHO Eastern Mediterranean Region (EMRO)

25,000 deaths (15% of global burden) 1,219,000 DALYs (20% of global burden)

22 countries Population: 530 million Birth cohort: >15 million

Studies on the etiology of bacterial meningitis among children in selected EMR countries

Study	Ages (years)	Total Cases	Cause of Disease No. of cases (%)							
(Year)			H	influenzae	S.	pneum.	<i>N.</i> r	nening.	0	ther
Kuwait ('81-87)	0-12	110	49	(45%)	23	(21%)	14	(13%))	24	(21%)
KSA ('82-'90)	0.1-10	55	26	(47%)	19	(35%)	2	(4%)	8	(15%)
Libya ('94)	0.1- 10	60	26	(43%)	20	(33%)	0		14	(24%)
Jordan ('95)	0.1-12	121	39	(32%)	18	(15%)	40	(33%)	24	(20%)
Egypt ('98-01)	0-5	228	89	(39%)	68	(30%)	30	(13%)	41	(18%)

1. Meningococcal meningitis

- *Neisseria meningitidis:* serogroups: A, B, C, W135, X, Y, Z, 29-E...
 - Africa: 80% of the burden (meningitis belt)
 - 18 countries (250 million people)
 - > 700 000 cases in the past 10 years
 - » 10-50 % lethality
 - 10-20 % of survivors
 suffer permanent
 sequels

Major outbreaks of MCD in the EMR 1976-2002

Meningococcal meningitis in the EMR

W135: an emerging threat

- Up till yr 2000, epidemics were mainly caused by serogroup A
 (B & C → sporadic cases & localized outbreaks)
- Emergence of W135 as an epidemic sero-group:
 - » 2000-2001: epidemics in Saudi Arabia during Hajj
 - » 2000-2001: world-wide epidemic after Hajj
 - 2002: W135 epidemic affected Burkina Faso (14,000 cases 1,500 deaths)
 - 2003: Mixed epidemics A-W135 confirm spread of W135 in the meningitis belt
 - 2005: mixed localized A-W135 outbreak in Darfur, Sudan
 - » 2006:
 - localized W135 outbreak in Darfur, Sudan
 - Sero-group A epidemic in southern Sudan

Reported Meningitis Cases, KSA, 1994 - 2003

Meningococcal disease in Saudi Arabia, 1995–2000 (Lingappa et al. EIDJ 2003)

Meningococcal Vaccines

Polysaccharide vaccines

- **AC**, ACW135, ACYW135
- Poorly immunogenic in infants
- Only short term protection for children below 4 years
- NOT recommended for routine vaccination
- Mass vaccination is the only way to control epidemics

Conjugate vaccines:

- Conjugate vaccine for C only is available
- Conjugate vaccine against Group A is expected 08-09
- Several combinations of conjugate vaccines are being

developed

VPI,WHO/EMRC

Properties of meningococcal vaccines

	Polysaccharid	olysaccharide Co	
Immunogenicity	vaccines	Vá	accines
5 yr olds-adults	High		High
Young children	Poor		High
Response to Booster	Poor		High
Quality of Antibody in Children			
Avidity	Low		High
Bactericidal activity	Low		High
Induction of memory	+/-		Yes
Effect on Colonization	+/-		Yes

The Meningitis Vaccine Project

- Created in June 2001 by a \$US 70 million grant from the Bill & Melinda Gates Foundation as a 10 year partnership between WHO and PATH
- Eliminate epidemic meningitis as a public health problem in Sub-Saharan Africa through the development, testing, licensure, and widespread use of conjugate meningococcal vaccines.

Guiding Principles

- The project is about public health impact and not simply making vaccines available
- Decisions about candidate vaccines linked to introduction strategies and likely financial constraints
- African public health officials to be closely involved with MVP

Discussions with African Public Health Officials & WHO/AFRO, Fall 01-Spring 02

- Cost of vaccine was the most important limiting factor to the introduction of new vaccines
- Meningitis belt countries are the poorest in the world
- Success of MVP (widespread use of a conjugate meningococcal vaccine in mass campaigns) would not be possible unless vaccines were priced less than than \$US 0.50 per dose

Choice of Men A Conjugate Vaccine

Extensive discussions throughout the Fall of 01 and a decision was made to pursue the development of a monovalent A vaccine because:

- Great proportion of meningococcal isolates from Africa still Group A
- Advantage of simplicity, low risk, and solid public health impact
- Low price-sustainability of the program

Use of the Monovalent A Conjugate Vaccine

- Used as a single dose in mass vaccination campaigns throughout the meningitis belt for persons between 1 and 29 years of age (target population about 250 million in 18 countries)
- EPI antigen in under ones (2 doses; 14 weeks with DTP3 and at 9 months with measles)

Men A Conjugate Vaccine Development

- Could not reach agreement with major vaccine manufacturers; negotiations ended in March 02
- Consortium of manufacturers has been created
 - Amsterdam company to produce A PS
 - Public laboratory in US to develop conjugation method
 - Indian company to produce vaccine

- Available by 1009-2010
- Target price of 40 cents per dose

2. Hib Disease

- Global burden:
 - in children less than five years of age
 - Hib is the most common cause of bacterial meningitis
 - Hib is the second most common cause of serious bacterial pneumonia
 - 400,000-500,000 deaths/year estimated in children less than five years of age

Hib meningitis and pneumonia burden

Hib disease in the EMR

- Total Hib disease cases:
 estimated 90,000-120,000 Hib cases/year
 Hib meningitis
 - cases:
 - Incidence: up to 58/100000 <5 children</p>
 - estimated 16 000 cases/year, (>12% of the global cases)
 - Deaths: Estimated >6 500/year

Countries with available information on Hib disease burden

Countries with "demonstrated" high Hib disease burden

Hib Meningitis among children <5 y in Oman

Source, EPI programmes

Hib meningitis cases < 5 years, UAE

Hib meningitis cases < 5 years Bahrain

Hib meningitis cases < 5 years

3. Pneumococcal diseases in the EMR

- Pneumococcal Pneumonia
 > 146,000 deaths (Pneumo-ADIP estimate)
- Pneumococcal meningitis
 15-35% of the total bacterial meningitis cases with higher mortality and disabling sequels (published data)

The pneumococcus as a cause of acute bacterial meningitis in EMR

Country	Ref, year	Age	% due to the Pneumococus
Egypt:	Sentinel surveillance 98-02,	<pre>< 5 years</pre>	32
	NAMRU-3	>5 years	40
		All age	37
Iran:	population-based study,	2 ms-12 years	34.3
	Shiraz, 2001-03	2-12 months	18.8
		13-48months	23.5
		48 ms-12 years	51.6
Jordan	Daoud, 1995	0.2-12	15
Lebanon	2004	All ages	34.4
Libya	(Rao, 98)	0.1-10	26

Source: Published data

The pneumococcus as a cause of acute bacterial meningitis in EMR (cont'd)

Country	Ref, year	Age	% due to the Pneumoc	
Kuwait	Zaki,90	All ages	20.9	
Oman	2004	All ages	50.0	
Qatar	2003	All ages	30.3	
Pakistan	khan, 98	0-15	67.1	
SAA Almuneef,, Kin	g Fahd hosp, 01	0-15	31	
Sudan Khartoum 2004		All ages	15.3	
Tunisia: populatio	n based	< 5 years	13	
study, 4	gov. 00-02			

Source: Published data

Antimicrobial resistance of pneumococci

Country	Antibiotic, % intermediate to high resistance				
	Penicillin	Chloramp	Cotrimx	Ceftria	
Egypt, Alkholy 03, (all infections) NAMRU-3, 98-2002 (meningitis)	37 50	21		16 0	
Iran, Oskoui 03 (all infections) Zamanzad, 03 (meningitis)	68 50	22 13	52	25	
Libya (98), meningitis	18				
Kuwait, Ahmed, 99 (ARI)	53.8				
Morocco, Benbachir 01 (all infections)	9.2	2	14.8		
Source: Published data				No child should a	

Antimicrobial resistance of pneumococci (cont'd)

Country	AB, % intermediate to high resistance				
	Penicillin	Chloramp	Cotrimx	Ceftria	
Oman, Elhag, 97 (all infections)	38				
Pakistan, Rajper 97, (meningitis)	34	22	35		
SAA, AlAqeel, 2002 (bacteremia)	51			7	
Yemen, Alzubiery 01, (meningitis)	33.3	33.3		16.7	
Tunisia, Ben Redjeb 2005, (1999-2003)	33-51%	7-12%	30-40%	7-12%	

Source: Published data

Pneumococcal vaccines

•Pneumococcal polysaccharide vaccine: 23 valent

Pneumococcal conjugate vaccines:

- » suitable for EPI
- 7 Valent available, covers around 80% of disease serotypes in US
- » 10 valent: coming soon

Pneumococcal vaccines

- Circulating Serotypes in different countries*:
 - Egypt: 49% and 69% of the circulating serotypes are vaccine serotypes (7valent and 10-valent respectively)
 - Tunisia: 62% (7valent)
 - Saudi Arabia: 63% (7valent) and 78% (10-valent)
 - Qatar: 54% (7 valent) and 56% (10valent)

Culture is a must to identify the circulating serotypes and, hence, suitability of the vaccine

*Source: Data presented to intercountry pneumococcal surveillance workshop, December 2004 and monitoring and evaluation workshop, Tunis March 05

Eastern Mediterranean Lab-Based Bacterial Meningitis Surveillance Network BMS-Net

VPI,WHO/EMRO

ensure providing safe vaccine for every childhood vaccine preventable diseases to every child in the Region

The importance of surveillance in new vaccines introduction

Vaccine

introduction

Pre-introduction

Document disease burden

suitability of the vaccine

Baseline data for impact assessment **Post-introduction**

Assess impact of vaccination on disease

Assure equitable coverage/effectiveness

Time

VPI,WHO/EMRO

Bacterial meningitis surveillance network in the EMR: Why Nm, Sp and Hib:

- Meningitis caused by Hib, N. meningitides, s. pneumoniae: 80% of bacterial meningitis in the region
 Hib and S. Pneumoniae are the leading cause of pneumonia among children
 Burden of Meningitis caused by Hib and pneumococci is
- an indicator of pneumonia caused by them
- Effective preventable measures are available/in the pipelines (new vaccines)
- Data are needed to guide introduction of new vaccines

BMS-Net

Objectives of lab-based BMS

- o Generate quality data in order to:
 - document burden and trends of bacterial meningitis caused by Hib, Pneumococcus and meningococcus
 - support evidence-based decision making for prevention and control strategies specially introduction of new vaccines
 - guide clinical management of cases
 - study antibiotic susceptibility/resistance pattern
 - monitor and evaluate prevention and control measures specially vaccination programmes
- o Build surveillance capacity for long term use

Why a regional surveillance network:

- Provides common protocols/methods and standards: ensures standardized, comparable data
- Share expertise and experience: Creates group of regional experts
- Foundation for training and infrastructure building
- Share/reduce costs of some components
- Mobilize resources and builds platform for international collaborations
- Elevates visibility of disease and results of surveillance among regional and global community

BMS-Net EMRO perspective:

- A Country programme: ownership of MoH
 Building on/strengthening ongoing activities
 Emphasis on culture for confirmation:
 - »Identifying circulating strains and suitability of the available vaccines
 - Studying AST (Anti-Microbial Sensitivity testing)

BMS Net: coordination

Surv/EPI

Sentinel siteshospital coordinator

Central level (MOH) coordination/support, Data management, QC

> Standards, Technical support Resource mobilization QA/QC Strain characterization Follow-up visits

CPHL

VPI,WHO/EMRO

EMRO

Regional lab

BMS-Net Current situation (April 2006)

Nation-wide lab surveillance Nation-wide Sentinel surveillance Sentinel surveillance in some regions Population-based surveillance Syndromic surveillance No surveillance

Situation, January 2004

BMS-Net

BMS-Net Current situation (April 2006)

None

Nation-wide lab surveillance Nation-wide Sentinel surveillance Sentinel surveillance in some regions Population-based surveillance Syndromic surveillance

No surveillance

BMS: Sentinel/pop-based sites supported by WHO, March 06

BMS: additional sites: planned May 06

Bacterial meningitis surveillance, Iran Pop-based sites, 2ms-15yrs, 2004-2005

Sentinel surveillance in Sudan, Pakistan, Syria and Yemen (full WHO support)

Start date: Sudan: Jan04, Yemen: Aug 04,

Syria: Feb 05, Pak: May 05 2,000 1,763 99% All cases **Culture done** Culture Pos 1.448 1,500 97% No. of cases 1'000 735 500 48% 298 89% 9% 7% 12% 10% 0 Sudan Yemen **Syria** Pakistan No child should die **VPI,WHO/EMRO**

Bacteria Isolated from CSF cultures, all ages >1 ms Sudan, Yemen, Syria, Pakistan (Culture results)

Hib Meningitis in children <5 years: King Fahad National Guard Hospital, Saudi Arabia

Estimated Hib meningitis incidences before Hib vaccine introduction in EMR

MVP Men A Vaccine Development Model

